Module-5

Diffusion

Contents

- 1) Diffusion mechanisms and steady-state & non-steady-state diffusion
- 2) Factors that influence diffusion and nonequilibrium transformation & microstructure

Diffusion phenomenon

- Definition Diffusion is the process of mass flow in which atoms change their positions relative to neighbors in a given phase under the influence of thermal and a gradient.
- The gradient can be a compositional gradient, an electric or magnetic gradient, or stress gradient.
- Many reactions in solids and liquids are diffusion dependent.
- Diffusion is very important in many industrial and domestic applications.
- E.g.: Carburizing the steel, annealing homogenization after solidification, coffee mixing, etc.

Diffusion mechanisms

- From an atomic perceptive, diffusion is a step wise migration of atoms from one lattice position to another.
- Migration of atoms in metals/alloys can occur in many ways, and thus corresponding diffusion mechanism is defined.

Diffusion mechanisms (contd...)

- Most energetically favorable diffusion mechanism is vacancy mechanism. Other important mechanism is interstitial mechanism by which hydrogen/nitrogen/oxygen diffuse into many metals.
- In ionic crystal, Schottky and Frankel defects assist the diffusion process.
- When Frenkel defects dominate in an ionic crystal, the cation interstitial of the Frenkel defect carries the diffusion flux. If Schottky defects dominate, the cation vacancy carries the diffusion flux.
- In thermal equilibrium, in addition to above defects, ionic crystal may have defects generated by impurities and by deviation from stochiometry.

Diffusion mechanisms (contd...)

- > Diffusion that occurs over a region is volume diffusion.
- Diffusion can occur with aid of linear/surface defects, which are termed as short-circuit paths. These enhances the diffusivity.
- However, diffusion by short-circuit paths (e.g.:dislocaions, grain boundaries) is small because the effective cross-sectional area over which these are operative is small.
- Diffusion can occur even in pure metals that is not noticeable. Diffusion that occurs in alloys which is noticeable called *net diffusion* as there occurs a noticeable concentration gradient.

<u>Diffusion – time function?</u>

- Steady-state and Non-steady-state diffusion processes are distinguished by the parameter – diffusion flux, J.
- Flux is defined as number of atoms crossing a unit area perpendicular to a given direction per unit time.
- > Thus flux has units of atoms/m².sec *or* moles/m².sec.
- If the flux is independent of time, then the diffusion process is called steady-state diffusion. On the other hand, for non-steady-state diffusion process, flux is dependent on time.

<u>Diffusion – time function? (contd...)</u>

Steady-state diffusion

- Steady-state diffusion processes is characterized by <u>Fick's</u> <u>first law</u>, which states that diffusion flux is proportional to concentration gradient.
- The proportionality constant, D, is called diffusion coefficient or diffusivity. It has units as m²/sec.
- ➢ For one-dimensional case, it can be written as

$$J_x = -D\frac{dc}{dx} = \frac{1}{A}\frac{dn}{dt}$$
 $J_x \neq f(x,t)$

where *D* is the diffusion constant, dc/dx is the gradient of the concentration *c*, dn/dt is the number atoms crossing per unit time a cross-sectional plane of area *A*.

E.g.: Hydrogen gas purification using palladium metal sheet.

Non-steady-state diffusion

- Most interesting industrial applications are non-steady-state diffusion in nature.
- Non-steady-state diffusion is characterized by <u>Fick's second</u> <u>law</u>, which can be expressed as

$$\frac{dc}{dt} = -\frac{dJ}{dx} = \frac{d}{dx} \left(D \frac{dc}{dx} \right) \qquad \qquad \frac{dc}{dt} = D \frac{d^2 c}{dx^2}$$

where dc/dt is the time rate of change of concentration at a particular position, *x*.

A meaningful solution can be obtained for the above secondorder partial equation if proper boundary conditions can be defined.

Non-steady-state diffusion (contd...)

 ➢ One common set of boundary conditions and the solution is: For t = 0, C = C₀ at 0 ≤ x ≤ ∞ For t > 0, C = C_s at x=0 C = C₀ at x = ∞
 ➢ The solution is $\frac{C_x - C_0}{C_s - C_0} = 1 - erf\left(\frac{x}{2\sqrt{Dt}}\right)$

where C_x represents the concentration at depth x after time t.
➤ The term *erf* stands for Gaussian error function, whose values can be obtained from standard mathematical tables.

E.g.: Carburization and decarburization of steel, corrosion resistance of duralumin, doping of semi-conductors, etc.

Influencing factors for diffusion

- Diffusing species: Interstitial atoms diffuse easily than substitutional atoms. Again substitutional atoms with small difference in atomic radius with parent atoms diffuse with ease than atoms with larger diameter.
- <u>Temperature</u>: It is the most influencing factor. Their relations can be given by the following Arrhenius equation

$$D = D_0 \exp\left(-\frac{Q}{RT}\right)$$

where D_0 is a pre-exponential constant, Q is the activation energy for diffusion, R is gas constant (Boltzmann's constant) and T is absolute temperature.

Influencing factors for diffusion (contd...)

From the temperature dependence of diffusivity, it is experimentally possible to find the values of Q and D_0 .

➤<u>Lattice structure</u>: Diffusivity is high for open lattice structure and in open lattice directions.

➢ Presence of defects: The other important influencing factor of diffusivity is presence of defects. Many atomic/volume diffusion processes are influenced by point defects like vacancies, interstitials.

>Apart from these, dislocations and grain boundaries, i.e. short-circuit paths as they famously known, greatly enhances the diffusivity.

Non-equilibrium transformation & microstructure

≻Non-equilibrium transformation occurs, usually, during many of the cooling processes like casting process.

>Equilibrium transformation requires extremely large time which is in most of the cases impractical and not necessary.

➤Alloy solidification process involves diffusion in liquid phase, solid phase, and also across the interface between liquid and solid.

> As diffusion is very sluggish in solid, and time available for it is less, compositional gradients develop in cast components.

≻These are two kinds: coring and segregation.

Non-equilibrium transformation & microstructure (contd...)

➢<u>Coring</u>: It is defined as gradual compositional changes across individual grains.

➤Coring is predominantly observed in alloys having a marked difference between liquidus and solidus temperatures.

≻It is often being removed by subsequent annealing and/or hot-working.

≻It is exploited in zone-refining technique to produce highpurity metals.

 \geq <u>Segregation</u>: It is defined as concentration of particular, usually impurity elements, along places like grain boundaries, and entrapments.

Segregation is also useful in zone refining, and also in the production of rimming steel.

Non-equilibrium transformation & microstructure (contd...)

≻Micro-segregation is used to describe the differences in composition across a crystal or between neighboring crystals.

➢ Micro-segregation can often be removed by prolonged annealing or by hot-working.

➤Macro-segregation is used to describe more massive heterogeneities which may result from entrapment of liquid pockets between growing solidifying zones.

≻Macro-segregation persists through normal heating and working operations.

Two non equilibrium effects of practical importance:(1) the occurrence of phase changes *or* transformations at temperatures other than those predicted by phase boundary lines on the phase diagram, and (2) the existence of non-equilibrium phases at room temperature that do not appear on the phase diagram.